Designing a flexible employability course for humanities and social science students

Tia Scott
Student Partner, WIL Course Design, HASS

Yvonne Oberhollenzer
Manager, Student Futures, HASS
PHSS2000: Practical Employability Experience

4x pre-experience workshops

Individual work-related experience

Online skills modules + 2x online group coaching sessions

Post-experience workshop + networking event

Work plan

2x reflections

Work report

Video + participation
What worked

Collaborative curriculum design process

Focus on professional and transferrable skills

Reflective assessment
Student’s feedback

I enjoyed combining work experience with workshops to explore things that I’ve learnt like emotional intelligence and capacity to work in teams.

The experience reinforced my excitement about graduating and working in a professional setting.

I now see that I’m in right place and studying the right thing.
Thank you

Yvonne Oberhollenzer
Manager, Student Futures
Faculty of Humanities and Social Sciences
y.oberhollenzer@uq.edu.au

Tia Scott
Student Partner, WIL course design
Faculty of Humanities and Social Sciences
tia.scott1@uqconnect.edu.au

Dr Deanne Gannaway
Senior Lecturer
Institute for Teaching and Learning Innovation
d.gannaway@uq.edu.au

Sophie Plunkett
Learning Designer
Faculty of Humanities and Social Sciences
s.plunkett@uq.edu.au
Improving the student experience with Online Scavenger Hunts

Shaun Chen, Project Leader, EAIT
Mark Gillow, Learning Designer, ICTE
Online, mobile scavenger hunts

Blend together the tried-and-true fun of scavenger hunts with mobile technology and create a learning experience like no other.

Students use phone app to work in teams to complete missions, earn points and learn while having fun.
Easy to build, Easy to run

Free app
5 mission types
Team or individual player
Real time activity feed
Live leaderboard
Totally paperless
Student Response

1st year EAIT Orientation
• 64 students comprising 10 team completed 231 missions around UQ campus in 90 minutes

International EAIT Orientation
• 101 students comprising 19 team completed 455 missions around UQ campus in 90 minutes
Find out more

www.goosechase.com/edu
m.gillow@uq.edu.au
s.chen10@uq.edu.au
Thank you

Mark Gillow
Learning Designer
Institute for Continuing and TESOL Education
m.gillow@icte.uq.edu.au
0432 047 077
Narrative Medicine

Dr. Vinu Verghis
What is Narrative Medicine

“Narrative medicine is…. The capacity to recognize, absorb, metabolize, interpret, and be moved to action by the predicament of others.”

-Rita Charon

Emily Mackenzie: Mental Illness

Butterfly Effect
What is Narrative Medicine

“What elements did you enjoy most from this module, and Why?”

Informal feedback

- Engaging, interactive, stimulating
- Youtube video
- UQ wordcloud
Thank you

Dr Vinu Verghis
School of Biomedical Sciences
v.verghis@uq.edu.au
Cirrus: Digital annotation & writing tools for engaged learning and assessment

Dr Nat Collie
Dr Catriona Mills
Dr Seb Dianati

cirrus.austlit.edu.au
Cirrus: The basics

Built by UQ’s AustLit team, with the support of TIG and TEL grants.

Developed in collaboration with UQ students and staff using the platform.

Offers four kinds of annotation (text, image, audio, and video) and two forms of digital writing (multi-tabbed exhibitions and parallax magazine-style webpages).

Used by over 4000 UQ students since 2016, in courses of between 10 and 400 students.

Coordinator-uploaded annotation assessment items are directly available through Blackboard.

The two digital writing formats can be downloaded as PDFs for submission through Blackboard and Turnitin.
Cirrus: Annotation tool (text, image, audio, & audio-visual)

Students can:
- Directly interrogate the object under analysis
- Analyse a richer range of content
- Prepare for tutorials online
- Give and receive peer feedback

Staff can:
- See student engagement with tutorial preparation and reading
- Easily monitor improvement over the semester
Cirrus: Exhibition tool

Students can quickly and easily build multi-tabbed webpages, using a custom system:

• Add text and images
• Embed interactive content, including audio and video, 3D objects, & interactive timelines
• Build up a rich analysis of the object under interrogation
• Directly annotate the object of study within their assignment
• Work individually or collaboratively
Cirrus: Parallax tool

Students use an intuitive branching system to build rich, beautiful webpages with a scrolling, magazine-style format:

- Make the most of illustrated material
- Produce a beautiful outcome that can form part of their ePortfolios
- Showcase creative work
- Branch out from the traditional essay into alternative forms of long-form illustrated writing
- Includes all the embedding and annotation functions of the multi-tabbed exhibition webpage tool
Cirrus: Staff and student feedback

• Easy to navigate

 “I found myself reading more carefully than I usually would, and I think that transferred into my other classes too.”

• Intuitive to learn and use

 “It was an easy way to present work in a visual, professional-looking way that is engaging for the readers, without any knowledge of design or coding or use of more specialist (and more time demanding) programs like Photoshop or InDesign.”

• Supports teaching and learning of critical analysis and creative communication skills

 “I was forced to read more critically and look at techniques more carefully.”

 “Excellent interface for visual analysis.”

• Enables the design of flexible, blended modes of course delivery

 “I think because it’s such an easy tool to annotate, reading and understanding what makes specific pieces good was a bit easier. For the peer reviews, it was good because I could see what other students wrote, and could give good quality feedback to others as well. Because of the peer review via Cirrus, I changed my story a ton and probably was better off because of it.”
Cirrus: Want to know more?

cirrus.austlit.edu.au
Dr Catriona Mills
c.mills@uq.edu.au
Thank you

Dr Natalie Collie
Lecturer
School of Communication and Arts
n.collie@uq.edu.au
07 3365 2164

Dr Catriona Mills
Senior Research Manager
AustLit
School of Communication and Arts
c.mills@uq.edu.au
07 3346 8279

Dr Seb Dianati
Digital Curriculum Designer
School of Languages and Cultures
s.dianati@uq.edu.au
07 3365 6278
Using technology in anatomy assessment

Dr Iulia Oancea
Dr Claire Aland
Ms Kate Drinkwater
Written Examinations

https://bokcenter.harvard.edu/taxonomies-learning
Student response

Performance

Opportunistic feedback
• Generally very positive
• Relevance of mock exam
Practical Examinations

- Digital Microscopy (svs file)
 - Internet
 - Convert svsvs to tiled jpgs, store locally on iPad
- Fully interactive and manipulable digital image
- Examsoft
 - Guided Access
 - Screenshot
- University of New England
 - Guided Access
 - Fully interactive and manipulable digital image
Thank you

Dr Iulia Oancea Lecturer
School of Clinical Medicine
i.oancea1@uq.edu.au

Dr Claire Aland Lecturer
School of Biomedical Sciences
r.aland@uq.edu.au

Ms Kate Drinkwater
Office of Medical Education
k.drinkwater@uq.edu.au

Mr Adam Landow
Education Support Officer
School of Environment and Rural Science
University of New England
Authentic Assessment in a Large Compulsory First-year Course

Sara Herke and Adam Piggott
Authentic Assessment

In authentic assessment … “tasks are either replicas of or analogous to the kinds of problems faced by adult citizens and consumers or professionals in the field.”

Grant Wiggins, 1993

“Authentic tasks must anchor the assessment process…Students must see what adults really do with their knowledge…Genuine tasks demand challenges that require good judgment, adaptiveness, and the habits of mind—such as craftsmanship and tolerance for ambiguity—never tested by simplistic test items.”

Grant Wiggins, 1996-97
The Assignment

A newly created public science museum is to open in St Lucia. A feature of the museum is that each exhibit item is accompanied by three explanations, each written for a different audience. One explanation is pitched to the “rookie scientist,” another to the “seasoned scientist”, and a third to the “grizzled scientist.” Patrons read the explanation tailored to the level at which they feel most comfortable. Some characteristics of a typical audience member in each category are described in Figure 1.

<table>
<thead>
<tr>
<th>Category of Scientist</th>
<th>Typical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rookie</td>
<td>Usually undertaking primary or early secondary schooling; easily distracted; will not read more than a few simple sentences at a time; will need terminology explained using a simple vocabulary; unfamiliar with graphs; likes to press buttons.</td>
</tr>
<tr>
<td>Seasoned</td>
<td>Usually undertaking or recently completed secondary schooling;</td>
</tr>
</tbody>
</table>

Based on this boasting by the SCIE1000 teaching team, you have been asked to develop an exhibit item. You will develop an interactive (command-line) Python program which engenders in museum patrons a sense of wonder at the Sperm Whale’s ability to judge the distance to an object in the ocean using echolocation.
Evidence of Success

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prior computing (N=136)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean OAP</td>
<td>--</td>
<td>3.52</td>
</tr>
<tr>
<td>Std dev of OAP</td>
<td>--</td>
<td>1.24</td>
</tr>
<tr>
<td>Prior computing (N = 69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean OAP</td>
<td>4.09</td>
<td>4.82</td>
</tr>
<tr>
<td>Std dev of OAP</td>
<td>1.17</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Cohen’s d effect size for this change in mean OAP for computer programming is 0.58, which is considered a medium effect.

<table>
<thead>
<tr>
<th>Course components</th>
<th>Python Contact</th>
<th>Tutorial</th>
<th>P&C Assignment</th>
<th>MyPyTutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prior computing N = 136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Positive</td>
<td>33</td>
<td>67</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>% No change</td>
<td>63</td>
<td>23</td>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>% Negative</td>
<td>4</td>
<td>11</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Prior computing N = 69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Positive</td>
<td>28</td>
<td>70</td>
<td>62</td>
<td>29</td>
</tr>
<tr>
<td>% No change</td>
<td>67</td>
<td>28</td>
<td>28</td>
<td>68</td>
</tr>
<tr>
<td>% Negative</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
A Student’s Reflection

Situation: The Python Coding and Communication assignment helped develop my problem-solving skills. We had to combine skills we had in many areas (modelling, coding and communication) to develop a program. While, at the time, it was difficult, finding the solution to problems you were having was rewarding. This rewarding side of solving problems is what made the experience memorable, and was a massive learning curve.

Effect: Using, what seemed to be broad and unspecific information, to extract models and then transfer these models into code that was dynamic and changed the models based on what the user inputs. This experience rationalized the use of coding in a real world scenario and made me appreciate the complexity of the underlying problem-solving skills required to code.

Action: I would try the problem at different times, not just in one sitting. When I got annoyed I would go and do something else then come back to it. There was times when the solution to a problem would come to me when I was doing something completely unrelated to SCIE1000, like cooking, and I would write down the solution right then and there.

Learning: I am more open to ambiguous problems with specific solutions. I also have a beginners level ability to code but a massive appreciation of it. I understand how truly rewarding solving a problem can be. Problems are universal to every career, so having an appreciation for the method of solving them has helped me develop as a student and person.
Where Can You Find More Information?

s.herke@uq.edu.au

adam.piggott@uq.edu.au

Or run some student code!
Iterative teaching of key concepts in Genetics

Dr Milos Tanurdzic and the BIOL1020 UQ2U ITaLI team
The process of meiosis is key to understanding the principles of inheritance

- key process for all sexual reproduction (plants, animals, fungi)
- cornerstone principle across all levels of genetics taught at UQ
- in textbooks it is presented descriptively and without iteration

Plan

Build a reusable learning object that can be embedded in several parts of BIOL1020 and later courses (e.g. BIOL2202/2902)

Create a learning activity that would integrate the process of meiosis with the principles of inheritance

Revisit and reuse the same teaching tools in several parts of the course to enable layered learning (a-ha! moments)
Build a reusable learning object that can be embedded in several parts of BIOL1020 and later courses (e.g. BIOL2202/2902)

Produced a new stand-alone Meiosis animation (Thanks Linda and the ITaLI team!) which was then embedded in BIOL1020 Online Learning (UQx) but can also be used in other courses.
Tutorial activity using ‘chromosomes’ to perform meiosis as described in the video but now adding the concepts of genes and alleles.

This activity shows students how they can derive Mendel’s principles of inheritance on their own once they understand how meiosis works. Simple, yet very effective active learning! Also scalable to different class sizes.
Tutorial activity on gene linkage (deviations from Mendelian predictions) using the same objects and prior knowledge.
Feedback

SECATs – best aspects

The online learning forced you to stay up to date with the content. The genes and evolution part was also fun because it was more based on logic instead of memorisation and the tutorial problems were like solving puzzles.
Musings and recommendations

• Thoughtful and analytical approach to teaching innovation (ie engaged teaching and design teams)
• Simple is good, simple is scalable
• Understanding program design and course content across years means we can re-use and re-purpose teaching tools and resources and that is a great thing for student learning.
Thank you!

BIOL1020 teaching team:
- A/Prof Cynthia Riginos
- A/Prof Nigel Beebe
- A/Prof Paul Ebert
- A/Prof Stuart Kellie
- Dr Jack Wang
- Prof Sassan Asgari

Questions?

Dr Milos Tanurdzic
School of Biological Sciences
m.tanurdzic@uq.edu.au

UQ2U BIOL1020 team:
- Ari Afflekt
- Linda MacDonald
- Dom McGrath
- Daniel Greenup

FoS SLOCI evaluation team
- Ciara Horton
- Kara Platt-Behrens
- Eimear Vallely
Animated Scenarios for Engagement in Ethical Decision Making
The Innovation

Multi-stage scenarios that explore ethical and professional scenarios

Based on published clinical examples

Questions after exploration will guide reflection

Peers will assess the written reflection
The scenarios

Example - Explores consent and scope of practice.

CYOA 1 - Professionalism, social contract and fraud.

CYOA 2 – Mandatory notifications to regulatory agency

CYOA 3 – Conflicts of interest and business ethics
Generating the scenarios
Thank you

Christopher Sexton
Lecturer
School of Dentistry
c.sexton@uq.edu.au
3365 8030

facebook.com/uniofqld
Instagram.com/uniofqld
Interactive web-based simulations to support deeper understanding of interacting processes in first year biology

A/Prof Cynthia Riginos
Dr. Joshua Thia (student partner)
Evolutionary processes interact to affect snapdragon colour variation

- Mutations
- Genetic drift
- Gene flow
- Natural selection
Evolutionary processes interact to affect snapdragon colour variation

- Mutations
- Genetic drift
- Gene flow
- Natural selection
Example: genetic drift + selection
Example: genetic drift + selection
Example: genetic drift + selection

Selection simulation

Population parameters
- Infinite population size?
- Diploid population size
 - 10
 - 100
 - 500
- Selective advantage of allele R, relative to W
 - -0.2
 - 0
 - 0.2
- Allele frequency of R
 - 0
 - 0.3
 - 1

Diploid population size = 190;
Selection on allele R = 0.09

Population parameters
- Infinite population size?
- Diploid population size
 - 10
 - 100
 - 500
- Selective advantage of allele R, relative to W
 - -0.2
 - 0
 - 0.2
- Allele frequency of R
 - 0
 - 0.3
 - 1

Selection simulation

Diploid population size = 10;
Selection on allele R = 0.09
Challenge – Scaling up for 1000+ students

Too many simultaneous requests can bog down server
(1000 students X 5 simulators X 10 submissions/per simulation/per student….. = 50,000 server requests!)

R Shiny
- Familiar to instructors (can do the programming, make changes)
- Clean graphical outputs
- Potentially $$$ - External hosting with cost scaled by demands
- Likely to slow or crash with high demand

Java
- Require reprogramming by eLIPSE team (= upfront $)
- No hosting costs
- No demand issues
R Shiny version embedded in edge.edx with links to Java backup
Recommendations for large classes

R Shiny
• OK, if activity is asynchronous
• Flexibility if instructors can program themselves
• Costs much lower than expected ($39/month on shinyapp.IO)

Java
• Better if activity is synchronous (in class)
• No ongoing costs
• Set up costs large unless instructors can program in Java (but eLIPSE can help!)
Feedback

SLOCI comments

• There were a lot of elements to this OL that made it one of the most varied and interactive in the course. The simulations were such a useful tool! It provided something to interact with, and then with each iteration gave results and graphs to interpret. They start of quite simple, and get pretty complicated towards the end with more parameters to control for each simulation. They were really cool, and it was cool how the questions revolved around their use. The online learning forced you to stay up to date with the content. The genes and evolution part was also fun because it was more based on logic instead of memorisation and the tutorial problems were like solving puzzles.

SECATs – best aspects

• The online learning forced you to stay up to date with the content. The genes and evolution part was also fun because it was more based on logic instead of memorisation and the tutorial problems were like solving puzzles.
• I really enjoyed the online learning aspect of BIOL1020.
• I really liked the online learning and the flexibility it gave me
Thank you!

Phil Waller – eLIPSE
Aneesha Bakharia – ITaLI

Faculty of Science Students as Partners Program

Questions?

Dr. Cynthia Riginos
Associate Professor
School of Biological Sciences
c.riginos@uq.edu.au

Dr. Joshua Thia
Student Partner

@uqITaLI
UQ Institute for Teaching and Learning Innovation (ITaLI)
Overleaf: Using it’s full potential

James Nicholson
What is LaTex and Overleaf?

Based on LaTex typesetting system primarily used in science disciplines for communication and publication

LaTex

• Handles complex notation well
• Separation of content and style
• Complex tables and illustrations
• Open source

Overleaf is a front end cloud based web application that makes using LaTex more intuitive and value adds features such as track changes, version control etc.

Use templates to manage style so students can concentrate on content
Key features

Collaboration
Work together on a single version
View collaborator edits in real time

Ease of Use
No complicated LaTeX installation
All the packages and templates you need

Document history
See what has been added and removed
Restore to any older version

Work from anywhere
Access your work from anywhere in the world
Work offline and sync your files via Dropbox and GitHub
Overleaf for Teaching and Learning

- Real time collaboration to see who has contributed what
- Provide students with template assignments or exercises
- Nothing to install (just sign up for a free account through UQ’s subscription)
- Track changes to leave comments or suggestions
- Version control to retrace steps
- Rich text editor
The good folks over at Overleaf have just pre-loaded my homework template so that my students no longer have to copy the contents from GitHub and then paste them into a new project at Overleaf.

In fact, it's even better than that. They created a button for me that I just added to the bottom of the homework page of our course webpage that you can click to open Overleaf with the template preloaded.

Awesomeness. I'm so glad that I chose Overleaf as the platform my students use to typeset their homework. And it just keeps getting better!

Dana Ernst
Assistant Professor in the Department of Mathematics and Statistics at Northern Arizona University.
Weekly Homework X

Tony Stark
Foundations of Mathematics
October 17, 2019

Theorem 1.2.3. Delete this text and write theorem statement here.

Proof. Blah, blah, blah. Here is an example of the align environment:

\[
\begin{align*}
\sum_{n=1}^{\infty} & = \left(\sum_{n=1}^{k} \right) + (k+1) \\
& = \left(k(k+1) \right) + (k+1) \\
& = k(k+2) \\
& = \frac{k(k+1)(k+2)}{2} \\
& = \frac{(k+1)(k+2)}{2} \\
& = \frac{(k+1)(k+2)}{2} \\
& = \frac{(k+1)(k+1+1)}{2}.
\end{align*}
\]

Theorem 1.2.4. Let $n \in \mathbb{Z}$. Then yada yada.

Proof. Blah, blah, blah. I'm so smart.
Current usage & other applications

- 300 UQ authors (June 2018)
- 1430 UQ authors (October 2019)

Official UQ Thesis Template

Manuscript templates for journal submission

SAGE: https://au.sagepub.com/en-gb/oce/manuscript-submission-guidelines#LATEX
Wiley: https://bit.ly/35QgLF8
T & F: https://authorservices.taylorandfrancis.com/formatting-and-templates/
Elsevier: https://www.elsevier.com/authors/author-schemas/latex-instructions

Resumes, Presentations, Letters, Posters etc…
Thank you

James Nicholson
Scholarly Publishing Officer
UQ Library
j.nicholson@library.uq.edu.au
07 3365 2788
RiPPLE: A Crowdsourced Adaptive Platform for Recommendation of Learning Activities and Study Sessions

Dr Hassan Khosravi
Senior Lecturer in Learning Analytics

h.khosravi@uq.edu.au
@haskhosravi
hassan-khosravi.net
Problem Statement

Four main categories of challenges in higher education:

Content
- High levels of diversity in academic ability

Activity
- Limited opportunities for facilitating higher order learning at scale

Support
- Less direct and indirect contact with each learner

Research
- Limited opportunities for conducting empirical educational research
Mission Statement

To develop of a cost-effective enterprise adaptive learning system called RiPPLE that:

1. Delivers an adaptive learning experience across a large range of disciplines
2. Fosters creativity and evaluative judgement at scale
3. Connects students based on their academic needs and aspirations
4. Supports ethical empirical educational research
RiPPLE overview & demo

1. Overview
2. Demo
3. Website
Supporting Ethical Empirical Educational Research

1. Considerable attention has been given to LA ethical principles: consent, transparency and benevolence

2. Supports empirical educational research by enabling instructors to conduct sound, large scale randomised, quasi-experimental and observational experiments on a range of fields including user modelling, recommender systems, crowdsourcing, peer learning and evaluative judgement.
Adoption and Dissemination

Current Status: Over 3000 users have used RiPPLE in 15 offerings. They have created over 7000 learning resources and have made over 250,000 attempts on these resources.
Thank you

Dr Hassan Khosravi
Senior Lecturer in Learning Analytics

h.khosravi@uq.edu.au
@haskhosravi
hassan-khosravi.net
Engaging students in large classes in online, collaborative discourse

Think.Chat.Learn
Instructional interdependency in blended courses

Lecturer Explanation

Peer discussion

Thinking/Problem-solving

Self-directed study

Synchronous (Teacher-Guided)

Asynchronous (Self-Regulated)
Collaborative Discourse: *Think.Chat.Learn (formerly MOOCchat)*

Intended LOs: Thinking about thinking, communication of concepts

Task design: stimulus video of a real world complex system introduces cognitive conflict. Students propose an explanation, discuss in a group to find a consensus explanation then reflect on their individual thinking.

The platform enables flexibility in choice of stimulus resources & tasks
Assessment of Online Collaborative and Critical Discourse

Analysing student discourse to evidence their reasoning about chemical concepts

…adapted Ruder, Lantz & Cole rubric (http://elipss.com/index.html)

In collaboration with the UQ Critical Thinking Project Team

Final Thoughts …

We are seeking course coordinators/academics who wish to trial Think.Chat.Learn in semester 1 2020 – fully supported by our team

Contact

g.lawrie@uq.edu.au

Think.Chat.Learn
Phil Waller, Anant Tuli UQ eLIPSE
Vincent Wheatley, Lydia Kavanagh EAIT
Effie Kartsonaki, Philip Sharpe SCMB
Deborah Brown, Peter Ellerton, UQ Critical Thinking Project
Prof Renee Cole, (University of Iowa), ELIPSS Project

Funding
UQ Teaching Innovation Grant
Video Reflexivity and Creativity in Developing Professional Communication Skills

Dr Emma Bartle and Dr Sandra March
Sue Gollagher and Jessica Florent

The School of Dentistry
ICTE
Context

- UQ School of Dentistry
- Effective clinical communication
- ESL cohort
- True collaboration: ICTE + SoDA = Fizz!
- Where to start? EARLY!
Institute of Continuing & TESOL Education

English for Academic Communication

Collaboration between ICTE language teachers and UQ academics to develop the academic language and communication skills of EAL students.

- EAC: HDR Research Writing STEM/HASS
- EAC: Postgraduate Law
- EAC: MA in Chinese Interpreting & Translation
- EAC: Master of Applied Linguistics
- EAC: Engineering – Undergrad & postgrad
- EAC: Architecture Undergrad & postgrad
- EAC: Gatton
- EAC: WRIT1001
- EAC: Development Practice
- EAC: Business
- EAC: Pharmacy
- EAC: Pharmaceutical Industry Practice (in development)

EAC: Dentistry
Teaching and Learning Sustainability

Teaching Outcomes:
• Embedded professional support for language skills teaching.
• Refined and enhanced clinical skills assessment tool (SOAP).

Learning Outcomes:
• More effective learning derived from Virtual Patient video scenarios.
• More authentic engagement with Simulation Peer Clinic role play learning activities.
• Improved student communication confidence and performance.
Structured Objective Assessment of Practice

SOAP = a form of OSCE or mini-CEX

Allows evaluation of performance of 20 individual clinical skills grouped in 4 or 5 domains:

Effective: A cherry-picked range of the skills developed in the Simulation Peer Clinic role play learning activities which demonstrate development of communication skills (initial greeting and maintenance of connection) and clinical safety skills (ergonomics and infection control protocols).

Efficient: Entire cohort assessed, scored, and all students receive immediate individual feedback for performance improvement delivered by 8 experienced calibrated examiners (plus 1 moderating examiner) who are all rostered session clinical supervisors, during 2 rostered in-class clinical sessions at each semester end.

Scaffolded: Second iteration adds fresh skills learned in Semester 2 while reassessing earlier skills.

Authentic: Assesses real-world skills required for dental practice

Integrated: Examines exactly what is learnt and done during class LAs for the course LO of performing a comprehensive oral examination.
Structured Objective Assessment of Practice

CRITERIA

Patient Communication and Greeting

Accomplished, Exceeds Expectations

- Greets patient confidently and by correct name and polite designation.
- Smiling, employs encouragement, direct, friendly tone of voice, volume and modulation.
- Introduces themselves in a timely manner. Effectively maintains communication contact with patient throughout proceedings.

Developing, Meets Expectations

- Directs patient by name, politely, showing respect.
- Speaks audibly, using friendly tone, smiles.
- Demonstrates a fair degree of self-confidence. Maintains communication contact with patient for most of the proceedings.

Beginning, Expects Not Met

- Patient's name not used. Directs patient inaccurately, or too loudly.
- Speaks abruptly, tone lacks friendliness, or no smile evident.
- Fails to introduce themselves. Fails to maintain communication contact with patient for most of the proceedings.

Infection control measures

Clinical safety

Accomplished, Exceeds Expectations

- Accomplishes all hand hygiene measures immediately and in a timely manner throughout task. Provides patient PPE effectively, efficiently, with clear explanations. Does all items of required operator PPE in correct sequence in a timely and safe manner, and maintains condition throughout. Completes all procedures adhering strictly to protocols preventing surface contamination.

Developing, Meets Expectations

- Accomplishes all hand hygiene measures throughout, with only minor hesitation. Provides patient PPE, with explanation. Does all operator PPE items in correct sequence using correct protocols with only minor hesitations. Completes procedures adhering to protocols preventing surface contamination. Takes appropriate corrective action in the event of minor lapses.

Beginning, Expects Not Met

- Accomplishes some hand hygiene measures incorrectly or haphazardly. Fails to provide patient PPE effectively, or offers little or no explanation. Performs some aspects of operator PPE protocols unsatisfactorily (e.g. mask not worn or worn around neck, touches front of mask with gloved hands, dons in incorrect order, or inappropriately adjusts dental or operator chair with gloved hands). More than one lapse in procedures prevents surface contamination. Fails to take appropriate corrective action in the event of minor lapses.

Extrarural palpatation

Accomplished, Exceeds Expectations

Developing, Meets Expectations

- Employs mostly effective extra oral soft tissue examination ergonomics for patient, operator, and illumination, with only minor adjustment required for ideal ergonomics. Palpates required musculature and soft tissue (lymph and salivary glands) palpation, or misses some features. Palpates TMJ ineffectively. Communicates actions and findings poorly or inappropriately with patient.

Beginning, Expects Not Met

- Employs ineffective extra oral soft tissue examination ergonomics for patient, operator, or illumination. Lacks confidence in musculature and soft tissue (lymph and salivary glands) palpation, or misses some features. Palpates TMJ ineffectively. Communicates actions and findings poorly or inappropriately with patient.
EAC Outcomes

• Shared expertise between content experts and language specialists
• Explicit professional communication skills
• Assessment tool refined
• Standardisation conducted to ensure test reliability
• 20-hour course designed
• Video reflexivity: peer feedback, teacher feedback and self-reflection
EAC: Professional Communication in Dentistry

Created Jun 25, 2019

- Add **CoPilots** to help manage this Grid!

Flip Code: `eacdenditry`

<table>
<thead>
<tr>
<th>Topic</th>
<th>Videos</th>
<th>Views</th>
<th>Hours of Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 7 Clear pronunciation</td>
<td>6</td>
<td>183</td>
<td>Sep 18, 2019</td>
</tr>
<tr>
<td>Module 5 Information Giving</td>
<td>6</td>
<td></td>
<td>Sep 11, 2019</td>
</tr>
<tr>
<td>Module 2 Building the relationship</td>
<td>10</td>
<td></td>
<td>Aug 21, 2019</td>
</tr>
</tbody>
</table>
The process
The students
Student feedback

“I liked the role play because we are improving our communication skills and getting to know each other better”

“I didn’t know that I didn’t pronounce the end of my words”

“The role play and then watching the virtual patient allowed me to clearly see how much better I can get at gathering and checking information”

“Now I know how to ask patients questions in a polite and efficient way.”

“I feel like the conversations are becoming less awkward”

“I am definitely more confident and familiar with what to do”

“I’m really glad there is this course for us to improve our communication skills”
Thank you

Jessica Florent
Senior Teacher
Institute of Continuing & TESOL Education
j.florent@icte.uq.edu.au

facebook.com/ICTEUQ
instagram.com/icte_uq
twitter.com/icteuq
linkedin.com/company/uqinstitute-of-continuing-tesol-education
youtube.com/user/ICTEUniofQld

CRICOS code 00025B